A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical.

نویسندگان

  • Xianghui Li
  • Rong Fu
  • Sheeyong Lee
  • Carsten Krebs
  • Victor L Davidson
  • Aimin Liu
چکیده

High-valent iron species are powerful oxidizing agents in chemical and biological catalysis. The best characterized form of an Fe(V) equivalent described in biological systems is the combination of a b-type heme with Fe(IV)=O and a porphyrin or amino acid cation radical (termed Compound I). This work describes an alternative natural mechanism to store two oxidizing equivalents above the ferric state for biological oxidation reactions. MauG is an enzyme that utilizes two covalently bound c-type hemes to catalyze the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Its natural substrate is a monohydroxylated tryptophan residue present in a 119-kDa precursor protein. An EPR-silent di-heme reaction intermediate of MauG was trapped. Mössbauer spectroscopy revealed the presence of two distinct Fe(IV) species. One is consistent with an Fe(IV)=O (ferryl) species (delta = 0.06 mm/s, DeltaE(Q) = 1.70 mm/s). The other is assigned to an Fe(IV) heme species with two axial ligands from protein (delta = 0.17 mm/s, DeltaE(Q) = 2.54 mm/s), which has never before been described in nature. This bis-Fe(IV) intermediate is remarkably stable but readily reacts with its native substrate. These findings broaden our views of how proteins can stabilize a highly reactive oxidizing species and the scope of enzyme-catalyzed posttranslational modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode

A stepwise catalytic oxidation for nitric oxide and nitrite by water-soluble iron(III) meso-tetrakis(N -methylpyridinium-4yl)porphyrin (Fe(4-TMPyP)) was first revealed by using an ITO electrode. Electrochemical and spectroelectrochemical studies characterized the formation of oxoiron(IV) porphyrin and oxoiron(IV) porphyrin p-cation radical in the oxidation of Fe(4TMPyP). O@Fe(4-TMPyP) showed se...

متن کامل

Mononuclear Non-Heme Fe(IV)=O Systems: Electronic Structures and Comparison to Heme and Copper Species

Mononuclear non-heme iron enzymes catalyze a variety of biological reactions requiring the binding and activation of dioxygen. Using spectroscopic methods and density functional calculations, the geometric and electronic structures of the oxygen intermediates and their reactivities are being defined to understand the catalytic mechanisms on a molecular level. A key intermediate is the Fe(IV)=O ...

متن کامل

High-resolution crystal structures and spectroscopy of native and compound I cytochrome c peroxidase.

Cytochrome c peroxidase (CCP) is a 32.5 kDa mitochondrial intermembrane space heme peroxidase from Saccharomyces cerevisiae that reduces H(2)O(2) to 2H(2)O by oxidizing two molecules of cytochrome c (cyt c). Here we compare the 1.2 A native structure (CCP) with the 1.3 A structure of its stable oxidized reaction intermediate, Compound I (CCP1). In addition, crystals were analyzed by UV-vis abso...

متن کامل

Electron-transfer chemistry of Ru-linker-(heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical.

We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)(3)](2+) complex through a -(CH(2))(7)- linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)-protein conjugate in which [Ru(bpy)(3)](2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru(2+)/Fe(3+)) to the...

متن کامل

The reaction of a high-valent nonheme oxoiron(IV) intermediate with hydrogen peroxide.

Reactive oxygen species (ROS) are versatile small molecules that under normal homeostatic control are essential for physiological signaling, whereas an improper balance can lead to aging and age-related diseases. A main regulatory mechanism for the ROS hydrogen peroxide (H2O2) is associated with heme enzymes called catalases. These metalloenzymes dismutate two molecules of H2O2 via the proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 25  شماره 

صفحات  -

تاریخ انتشار 2008